首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
林业   1篇
  5篇
水产渔业   2篇
畜牧兽医   3篇
植物保护   2篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
11.
Foliar application of nickel (Ni) has higher use efficiencies and is preferred over soil application in view of its very low requirement. Pot experiments were conducted during winter season of 2012-2013 and repeated during 2013-2014. Treatments consisted of twelve Ni levels applied as nickel sulphate (NiSO4.7H2O) spray (T1-Ni0%, T2-Ni0.05%, T3-Ni0.1%, T4-Ni0.2%, T5-Ni0.3%, T6-Ni0.4%, T7-Ni0.5%, T8-Ni0.6%, T9-Ni0.7%, T10-Ni0.8%, T11-Ni0.9%,and T12-Ni1.0%,) with recommended doses of fertilizers (RDF) applied in all pots. The result showed that growth and yield attributes viz. plant height, leaf greenness index, number of tillers, number of ears pot-1, number of grains ear-1, straw yield, grain yield and weight of 1000 grains of barley was the maximum with three foliar application of 0.2% of NiSO4.7H2O (T4-Ni0.2%) at 20, 40, and 60 days after sowing (DAS) during both the years. The concentration of Fe, Mn and Zn in grain increased significantly up to T4-Ni0.2% and after this level, a significant decline was recorded during both the years. As regards to the concentration of Ni is concerned, it increased significantly both in grain and straw with increasing levels of Ni spray and the maximum concentration was at T12-Ni1.0%, during both the years. The uptake of Fe, Mn, Cu and Zn in grain of barley increased significantly during both the years up to T4-Ni0.2%,thereafter, it declined significantly with successive increase in dose of Ni spray. Thus 0.2% foliar spray of NiSO4.7H2O significantly increased growth, yield and Fe, Cu, Mn, Zn (micronutrients) status in barley.  相似文献   
12.
13.
A pot experiment was conducted in a glass house on low nickel containing alluvial soil in the Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, during 2012–13 and 2013–14, to study the response of barley to soil application of nickel (Ni). There were ten treatments of Ni (0, 2.5, 5, 10, 15, 20, 30, 40, 50 and 60 mg kg?1) studied with recommended dose of fertilizers nitrogen, phosphorus, potassium and sulfur (N:P:K:S :: 40:30:30:20 mg kg?1).The results showed a significant increase in plant height, number of tillers, chlorophyll content, straw and grain yield, and 1,000 grains weight with application of 10 mg Ni kg?1 soil during both years of study. The micronutrient concentration and uptake in straw and grain increased with application of <15 mg Ni kg?1 soil and beyond that declined significantly. Diethylenetriaminepentaacetic acid-extractable micronutrient iron, manganese, copper, zinc and nickel (Fe, Mn, Cu, Zn and Ni) content in soil increased with increasing level of Ni. The maximum urease activity in post-harvest soil was noticed with application of 40 mg Ni kg?1 soil. The microbial population viz. bacteria, fungi and actinomycetes were higher with 5, 30 and 10 mg Ni kg?1 soil, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号